floating-point unit - определение. Что такое floating-point unit
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое floating-point unit - определение

Найдено результатов: 6551
Floating-point unit         
COPROCESSOR FOR FLOATING POINT ARITHMETIC
Floating Point Unit; Floating-Point Processor; Math coprocessor; Floating point processor; Floating-Point Unit; Floating point unit; Floating-point emulation; Floating point emulation; FP emulation; FP emulator; FPU emulation; FPU emulator; Floating-point emulator; Floating point emulator; Floating-point unit emulator; Floating point unit emulator; Floating-point unit emulation; Floating point unit emulation; Floating point software emulation; Floating-point software emulation; Floating point software emulator; Floating-point software emulator; FP software emulation; FP software emulator; Floating-point emulation software; Floating point emulation software; FP emulation software; Floating-point emulation software routine; Floating point emulation software routine; FP emulation software routine
A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system specially designed to carry out operations on floating-point numbers. Typical operations are addition, subtraction, multiplication, division, and square root.
Floating-Point Unit         
COPROCESSOR FOR FLOATING POINT ARITHMETIC
Floating Point Unit; Floating-Point Processor; Math coprocessor; Floating point processor; Floating-Point Unit; Floating point unit; Floating-point emulation; Floating point emulation; FP emulation; FP emulator; FPU emulation; FPU emulator; Floating-point emulator; Floating point emulator; Floating-point unit emulator; Floating point unit emulator; Floating-point unit emulation; Floating point unit emulation; Floating point software emulation; Floating-point software emulation; Floating point software emulator; Floating-point software emulator; FP software emulation; FP software emulator; Floating-point emulation software; Floating point emulation software; FP emulation software; Floating-point emulation software routine; Floating point emulation software routine; FP emulation software routine
<hardware> (FPU) A floating-point accelerator, usually in a single integrated circuit, possible on the same IC as the central processing unit. (1994-10-27)
floating-point         
  • Single-precision floating-point numbers on a [[number line]]: the green lines mark representable values.
  • none
  • signs]] of representable values
  • Z3]] computer, which uses a 22-bit binary floating-point representation
  • [[Leonardo Torres y Quevedo]], who proposed a form of floating point in 1914
  • Fig. 1: resistances in parallel, with total resistance <math>R_{tot}</math>
COMPUTER FORMAT FOR REPRESENTING RATIONAL NUMBERS
Floating-point; Floating-point number; Floating point number; Hidden bit; Floating point type; Floating point numbers; Floating point arithmetic; Floating-point error; Floating point value; Numeric (data type); Floating point error; Floating-point math; Float (computing); Floating point exception; Floating-Point; Finite precision arithmetics; Floating-point numbers; Floating decimal point; Floating point format; Floating-point format; Floating point representation; Floating-point representation; Floating-point arithmetics; Floating point arithmetics; Floating point; Binary floating point; Assumed bit; Implicit bit; Assumed bit (floating point); Hidden bit (floating point); Implicit bit (floating point); Leading bit (floating point); Implicit leading bit (floating point); Implicit leading bit; Implicit leading bit convention; Assumed bit convention; Leading bit convention; Implicit bit convention; Hidden bit convention; Hidden bit rule; Implicit bit rule; Implicit leading bit rule; Assumed bit rule; Leading bit rule; Binary floating-point; Octal floating point; Octal floating-point; Binary floating-point arithmetic; Binary floating-point number; Octal floating-point number; Octal floating-point arithmetic; Base 2 floating point; Base-2 floating point; Radix-2 floating point; Radix 2 floating point; Base 8 floating point; Base-8 floating point; Radix-8 floating point; Radix 8 floating point; Binary512; Radix 65536 floating point; Radix-65536 floating point; Base 65536 floating point; Base-65536 floating point; Base-256 floating point; Quaternary floating point; Base 256 floating point; Radix 256 floating point; Radix-256 floating point; Base 4 floating point; Base-4 floating point; Radix 4 floating point; Radix-4 floating point; Binary floating point number; Representable floating-point number; Fast math; Floating point math; Binary floating-point number system; Binary floating point number system; Binary floating point numbering system; Binary floating-point numbering system
<programming, mathematics> A number representation consisting of a mantissa, M, an exponent, E, and a radix (or "base"). The number represented is M*R^E where R is the radix. In science and engineering, exponential notation or scientific notation uses a radix of ten so, for example, the number 93,000,000 might be written 9.3 x 10^7 (where ^7 is superscript 7). In computer hardware, floating point numbers are usually represented with a radix of two since the mantissa and exponent are stored in binary, though many different representations could be used. The IEEE specify a standard representation which is used by many hardware floating-point systems. Non-zero numbers are normalised so that the binary point is immediately before the most significant bit of the mantissa. Since the number is non-zero, this bit must be a one so it need not be stored. A fixed "bias" is added to the exponent so that positive and negative exponents can be represented without a sign bit. Finally, extreme values of exponent (all zeros and all ones) are used to represent special numbers like zero and positive and negative infinity. In programming languages with explicit typing, floating-point types are introduced with the keyword "float" or sometimes "double" for a higher precision type. See also floating-point accelerator, floating-point unit. Opposite: fixed-point. (2008-06-13)
floating-point         
  • Single-precision floating-point numbers on a [[number line]]: the green lines mark representable values.
  • none
  • signs]] of representable values
  • Z3]] computer, which uses a 22-bit binary floating-point representation
  • [[Leonardo Torres y Quevedo]], who proposed a form of floating point in 1914
  • Fig. 1: resistances in parallel, with total resistance <math>R_{tot}</math>
COMPUTER FORMAT FOR REPRESENTING RATIONAL NUMBERS
Floating-point; Floating-point number; Floating point number; Hidden bit; Floating point type; Floating point numbers; Floating point arithmetic; Floating-point error; Floating point value; Numeric (data type); Floating point error; Floating-point math; Float (computing); Floating point exception; Floating-Point; Finite precision arithmetics; Floating-point numbers; Floating decimal point; Floating point format; Floating-point format; Floating point representation; Floating-point representation; Floating-point arithmetics; Floating point arithmetics; Floating point; Binary floating point; Assumed bit; Implicit bit; Assumed bit (floating point); Hidden bit (floating point); Implicit bit (floating point); Leading bit (floating point); Implicit leading bit (floating point); Implicit leading bit; Implicit leading bit convention; Assumed bit convention; Leading bit convention; Implicit bit convention; Hidden bit convention; Hidden bit rule; Implicit bit rule; Implicit leading bit rule; Assumed bit rule; Leading bit rule; Binary floating-point; Octal floating point; Octal floating-point; Binary floating-point arithmetic; Binary floating-point number; Octal floating-point number; Octal floating-point arithmetic; Base 2 floating point; Base-2 floating point; Radix-2 floating point; Radix 2 floating point; Base 8 floating point; Base-8 floating point; Radix-8 floating point; Radix 8 floating point; Binary512; Radix 65536 floating point; Radix-65536 floating point; Base 65536 floating point; Base-65536 floating point; Base-256 floating point; Quaternary floating point; Base 256 floating point; Radix 256 floating point; Radix-256 floating point; Base 4 floating point; Base-4 floating point; Radix 4 floating point; Radix-4 floating point; Binary floating point number; Representable floating-point number; Fast math; Floating point math; Binary floating-point number system; Binary floating point number system; Binary floating point numbering system; Binary floating-point numbering system
¦ noun [as modifier] Computing denoting a mode of representing numbers as two sequences of bits, one representing the digits in the number and the other an exponent which determines the position of the radix point.
Floating-point arithmetic         
  • Single-precision floating-point numbers on a [[number line]]: the green lines mark representable values.
  • none
  • signs]] of representable values
  • Z3]] computer, which uses a 22-bit binary floating-point representation
  • [[Leonardo Torres y Quevedo]], who proposed a form of floating point in 1914
  • Fig. 1: resistances in parallel, with total resistance <math>R_{tot}</math>
COMPUTER FORMAT FOR REPRESENTING RATIONAL NUMBERS
Floating-point; Floating-point number; Floating point number; Hidden bit; Floating point type; Floating point numbers; Floating point arithmetic; Floating-point error; Floating point value; Numeric (data type); Floating point error; Floating-point math; Float (computing); Floating point exception; Floating-Point; Finite precision arithmetics; Floating-point numbers; Floating decimal point; Floating point format; Floating-point format; Floating point representation; Floating-point representation; Floating-point arithmetics; Floating point arithmetics; Floating point; Binary floating point; Assumed bit; Implicit bit; Assumed bit (floating point); Hidden bit (floating point); Implicit bit (floating point); Leading bit (floating point); Implicit leading bit (floating point); Implicit leading bit; Implicit leading bit convention; Assumed bit convention; Leading bit convention; Implicit bit convention; Hidden bit convention; Hidden bit rule; Implicit bit rule; Implicit leading bit rule; Assumed bit rule; Leading bit rule; Binary floating-point; Octal floating point; Octal floating-point; Binary floating-point arithmetic; Binary floating-point number; Octal floating-point number; Octal floating-point arithmetic; Base 2 floating point; Base-2 floating point; Radix-2 floating point; Radix 2 floating point; Base 8 floating point; Base-8 floating point; Radix-8 floating point; Radix 8 floating point; Binary512; Radix 65536 floating point; Radix-65536 floating point; Base 65536 floating point; Base-65536 floating point; Base-256 floating point; Quaternary floating point; Base 256 floating point; Radix 256 floating point; Radix-256 floating point; Base 4 floating point; Base-4 floating point; Radix 4 floating point; Radix-4 floating point; Binary floating point number; Representable floating-point number; Fast math; Floating point math; Binary floating-point number system; Binary floating point number system; Binary floating point numbering system; Binary floating-point numbering system
In computing, floating-point arithmetic (FP) is arithmetic using formulaic representation of real numbers as an approximation to support a trade-off between range and precision. For this reason, floating-point computation is often used in systems with very small and very large real numbers that require fast processing times.
Floating dock (jetty)         
TYPE OF DOCK SUPPORTED BY PONTOONS
Floating jetty; Floating pier
A floating dock, floating pier or floating jetty is a platform or ramp supported by pontoons. It is usually joined to the shore with a gangway.
IBM hexadecimal floating-point         
NUMBER REPRESENTATION
IBM Floating Point Standard; IBM floating point architecture; IBM floating-point architecture; IBM Floating Point Architecture; Hexadecimal floating point (IBM); IBM Hexadecimal Floating Point; IBM hexadecimal floating point
Hexadecimal floating point (now called HFP by IBM) is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture,IBM System/360 Principles of Operation, IBM Publication A22-6821-6, Seventh Edition (January 13, 1967), pp.41-50IBM System/370 Principles of Operation, IBM Publication GA22-7000-4, Fifth Edition (September 1, 1975), pp.
Block floating point         
METHOD USED TO PROVIDE AN ARITHMETIC APPROACHING FLOATING POINT WHILE USING A FIXED-POINT PROCESSOR; IN WHICH AN EXPONENT IS ASSIGNED TO AN ENTIRE BLOCK OF MANTISSAS
Block Floating Point; BFP (floating point format); Block-floating-point; BFP algorithm; Block floating-point algorithm; Block floating point algorithm; Block floating-point scaling; Block floating point scaling; BFP scaling; Block Floating Point Scaling; Block floating-point
Block floating point (BFP) is a method used to provide an arithmetic approaching floating point while using a fixed-point processor. BFP assigns a group of significands (the non-exponent part of the floating-point number) to a single exponent, rather than single significand being assigned its own exponent.
Extended precision         
FLOATING POINT NUMBER FORMATS
Float96; 80-bit floating point format; 40-bit floating point format; Float80; Float40; IEEE double extended precision; 40-bit floating-point format; 80-bit floating-point format; 40-bit binary floating-point format; 80-bit binary floating-point format; Double-extended-precision floating-point format; Double extended-precision floating-point format; Double extended precision floating point format; Double-extended-precision floating-point; Double extended-precision floating-point; Double extended precision floating point; Double-extended-precision format; Double extended-precision format; Double extended precision format; Extended-precision floating-point format; Extended precision floating point format; Extended-precision floating-point; Extended precision floating point; Extended-precision format; Extended precision format
Extended precision refers to floating-point number formats that provide greater precision than the basic floating-point formats. defines extended precision format as "A format that extends a supported basic format by providing wider precision and range.
Tapered floating point         
FORMAT SIMILAR TO FLOATING POINT, BUT WITH VARIABLE-SIZED ENTRIES FOR THE SIGNIFICAND AND EXPONENT INSTEAD OF THE FIXED-LENGTH ENTRIES FOUND IN NORMAL FLOATING-POINT FORMATS, AND A FIXED-SIZE POINTER INDICATING THE NUMBER OF DIGITS IN THE EXPONENT
Tapered floating-point; Tapered floating point format; Tapered floating-point format; Tapered floating point arithmetic; Tapered floating-point arithmetic; Tapered floating point scheme; Tapered floating-point scheme; Tapered floating point representation; Tapered floating-point representation; Tapered accuracy; Tapered overflow; Tapered underflow; Leveling (tapered floating point); Level (tapered floating point); Tapered arithmetic
In computing, tapered floating point (TFP) is a format similar to floating point, but with variable-sized entries for the significand and exponent instead of the fixed-length entries found in normal floating-point formats. In addition to this, tapered floating-point formats provide a fixed-size pointer entry indicating the number of digits in the exponent entry.